Compiled by: Mustafa Asif

36. Trigonometry

- interpret and use three-figure bearings
- apply Pythagoras' theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle
- solve trigonometrical problems in two dimensions involving angles of elevation and depression
- extend sine and cosine functions to angles between 90° and 180°
- solve problems using the sine and cosine rules for any triangle and the formula
 - area of triangle = $\frac{1}{2}$ ab sin C
- solve simple trigonometrical problems in three dimensions

Measured clockwise from the north, i.e. 000°–360°.

e.g. Find the bearing of A from B if the bearing of B from A is 125°

Angles will be quoted in, and answers required in, degrees and decimals of a degree to one decimal place.

Calculations of the angle between two planes or of the angle between a straight line and plane will not be required.

Notes

https://drive.google.com/open?id=1kkHUec 9ulgMey-vZ2BATYGzrObxbKuY

Videos for understanding

https://www.youtube.com/watch?v=xE3BZXpCKqE

https://www.youtube.com/watch?v=jZxgmsg 82E

https://www.youtube.com/watch?v=WqBDpujbtlo

https://www.youtube.com/watch?v=I8LI7wPSvNI

Compiled by: Mustafa Asif

UNIT

Pythagoras' Theorem and Trigonometry

2.4

Pythagoras' Theorem

- 1. For a right-angled triangle ABC, if $\angle C = 90^{\circ}$, then $AB^2 = BC^2 + AC^2$, i.e. $c^2 = a^2 + b^2$.
- 2. For a triangle ABC, if $AB^2 = BC^2 + AC^2$, then $\angle C = 90^\circ$.

Trigonometric Ratios of Acute Angles

The side opposite the right angle C is called the hypotenuse.
 It is the longest side of a right-angled triangle.

Compiled by: Mustafa Asif

4. In a triangle ABC, if $\angle C = 90^\circ$,

then
$$\frac{AC}{AB} = \frac{\text{opp}}{\text{adj}}$$
 is called the sine of $\angle B$, or $\sin B = \frac{\text{opp}}{\text{hyp}}$, $\frac{BC}{AB} = \frac{\text{adj}}{\text{is called the cosine of } \angle B$, or $\cos B = \frac{\text{adj}}{\text{is called the cosine of } \angle B$.

$$\frac{BC}{AB} = \frac{\text{adj}}{\text{hyp}}$$
 is called the cosine of $\angle B$, or $\cos B = \frac{\text{adj}}{\text{hyp}}$,

$$\frac{AC}{BC} = \frac{\text{opp}}{\text{adj}}$$
 is called the tangent of $\angle B$, or $\tan B = \frac{\text{opp}}{\text{adj}}$.

Trigonometric Ratios of Obtuse Angles

When θ is obtuse, i.e. 90° < θ < 180°.

$$\sin \theta = \sin (180^{\circ} - \theta),$$

$$\cos \theta = -\cos (180^{\circ} - \theta)$$
.

$$\tan \theta = -\tan (180^{\circ} - \theta).$$

Area of a Triangle

6. Area of $\triangle ABC = \frac{1}{2}ab \sin C$

Sine Rule

- 7. In any $\triangle ABC$, the Sine Rule states that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.
- 8. The Sine Rule can be used to solve a triangle if the following are given:
 - two angles and the length of one side; or
 - the lengths of two sides and one non-included angle.

Compiled by: Mustafa Asif

Cosine Rule

9. In any $\triangle ABC$, the Cosine Rule states that $a^2 = b^2 + c^2 - 2bc \cos A$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$
or
$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

- 10. The Cosine Rule can be used to solve a triangle if the following are given:
 - the lengths of all three sides; or
 - · the lengths of two sides and an included angle.

Angles of Elevation and Depression

- The angle A measured from the horizontal level XY is called the angle of elevation of Q from X.
- The angle B measured from the horizontal level PQ is called the angle of depression of X from Q.

Compiled by: Mustafa Asif

Example 1

In the figure, A, B and C lie on level ground such that AB = 65 m, BC = 50 m and AC = 60 m. T is vertically above C such that TC = 30 m.

Find

- (i) AĈB,
- (ii) the angle of elevation of T from A.

Solution

(i) Using cosine rule,

$$AB^{2} = AC^{2} + BC^{2} - 2(AC)(BC) \cos A\hat{C}B$$

$$65^{2} = 60^{2} + 50^{2} - 2(60)(50) \cos A\hat{C}B$$

$$\cos A\hat{C}B = \frac{1875}{6000}$$

$$A\hat{C}B = 71.8^{\circ} \text{ (to 1 d.p.)}$$

(ii) In ΔATC,

$$\tan T \hat{A} C = \frac{30}{60}$$

 $T \hat{A} C = 26.6^{\circ} \text{ (to 1 d.p.)}$
 \therefore Angle of elevation of T from A is 26.6°

Compiled by: Mustafa Asif

Bearings

 The bearing of a point A from another point O is an angle measured from the north, at O, in a clockwise direction and is written as a three-digit number.
 e.g.

The bearing of A from O is 040°.

The bearing of B from O is 135°.

The bearing of C from O is 230°.

Example 3

The figure shows a pyramid with a rectangular base, ABCD, and vertex V. The slant edges VA, VB, VC and VD are all equal in length and the diagonals of the base intersect at N. AB=8 cm, AC=10 cm and VN=12 cm.

- Find the length of BC.
- (ii) Find the length of VC.
- (iii) Write down the tangent of the angle between VN and VC.

Solution

(i)

Using Pythagoras' Theorem,

$$AC^2 = AB^2 + BC^2$$

$$10^2 = 8^2 + BC^2$$

$$BC^{2} = 36$$

$$BC = 6 \text{ cm}$$

Compiled by: Mustafa Asif

(ii)
$$CN = \frac{1}{2}AC$$

= 5 cm

Using Pythagoras' Theorem,

$$VC^{2} = VN^{2} + CN^{2}$$

= $12^{2} + 5^{2}$
= 169
 $VC = 13 \text{ cm}$

(iii) The angle between VN and VC is CVN. In ∆VNC,

$$\tan C\hat{V}N = \frac{CN}{VN}$$

$$= \frac{5}{12}$$

Compiled by: Mustafa Asif

The two triangles below are similar.
 The lengths are in centimetres.

SP18/01/13

Calculate a and b.

Answer	a =	
	b=	 [3]

Compiled by: Mustafa Asif

2 (a)

In triangle ABC, $ABC = 45^{\circ}$ and $BAC = 65^{\circ}$. AC is 5 cm shorter than BC.

(i) Show that $BC = \frac{5 \sin 65}{\sin 65 - \sin 45}$.

[3]

(ii) Find the length of BC.

Compiled by: Mustafa Asif

(b)

In triangle PQR, PQ = 13 cm, QR = 6 cm and RP = 10 cm. QR is produced to S.

(i) Find the value of cos PRQ, giving your answer as a fraction in its simplest form.

	-	
Answer	 15	

(ii) Hence write down the value of cos PRS.

Answer [11]

Compiled by: Mustafa Asif

3

NOT TO SCALE

The diagram shows the positions of two ports, A and B, and a lighthouse L. The bearing of B from L is 062°. AB = 13 km, BL = 14 km and AL = 8 km.

(a) Calculate the bearing of A from L.

_____[4]

(b) A boat is located at C.
C is 11 km from B and BCA = 90°.
The boat travels to port A in a straight line.

Find the distance the boat travels.

...... km [2]

Compiled by: Mustafa Asif

(c) The boat then travels in a straight line from port A to port B. It travels at an average speed of 3.75 km/h.

Calculate the time taken for the boat to travel from port A to port B. Give your answer in hours and minutes.

 hours	 minutes	[21
 22000	 111111111111111111111111111111111111111	L-J

(4)

M/J19/21/5(b)

NOT TO SCALE

PQRS is a trapezium with PQ parallel to SR and $S\hat{P}Q = 90^{\circ}$. SQ = 15 cm, QR = 11 cm and $PSQ = 58^{\circ}$.

(i) Calculate PS.

PS = cm [2]

(ii) Calculate the obtuse angle SRQ.

Compiled by: Mustafa Asif

5

The diagram shows the positions of two boats, A and B, drawn to a scale of 1:m. The actual distance between the two boats is $4 \,\mathrm{km}$.

(a) Find m, giving your answer correct to 1 significant figure.

	<i>m</i> =	[2]
(b)	Measure the bearing of A from B .	
		r11
		[1]
(c)	A third boat is positioned at C . C is on a bearing of 120° from A and on a bearing of 195° from B .	
	Find and label C on the diagram.	[2]
(d)	Find, by measurement, the actual distance in kilometres from A to C .	

..... km [2]

Compiled by: Mustafa Asif

(e)

NOT TO SCALE

The diagram shows the positions of the boats, A and B, and a harbour, H. AB = 4 km, AH = 6 km and $A\hat{B}H = 70^{\circ}$.

Calculate AĤB.

AHB	=	 [3]	1

(ii) The boat at A travels in a straight line to the harbour at H. The average speed of the boat is p km/h. It takes 12 minutes 20 seconds for the boat to travel from A to H. Calculate p.

Compiled by: Mustafa Asif

6

A boat travels from P to Q. At Q, it turns through 90° and travels to R as shown in the diagram.

It then returns from R to Q, and then to P, following the same route in reverse. PQ = 6 km and QR = 9 km.

The first part of the journey, from P to Q to R, takes 3 hours. The return part of the journey, from R to Q to P, takes 2 hours.

(a) Calculate the average speed for the whole journey from P to Q to R and back from R to Q to P.

			Answer	 km/h [2]
(b)	The	bearing of Q from P is 040°.		
	(ī)	Calculate the bearing of R from Q .		
	(ii)	Calculate the bearing of ${\it P}$ from ${\it Q}$.	Answer	 [1]
			f	F11

Compiled by: Mustafa Asif

7

The diagram shows a triangular field ABC. $AB = 95 \,\mathrm{m}$, $BC = 132 \,\mathrm{m}$ and $AC = 174 \,\mathrm{m}$.

(a) Show that BÂC = 48.6°, correct to 1 decimal place.

[3]

(b) The field is sown with flower seeds. Each square metre of the field is sown with 3 grams of seed. The seed costs \$8.50 for 100 grams.

Calculate the cost of the flower seed needed for the field.

Answer \$[4]

Compiled by: Mustafa Asif

8 [Volume of a pyramid = ¹/₃ × base area × height]

The diagram shows a pyramid with a rectangular, horizontal base. Vertex F of the pyramid is vertically above the centre of the base, E. $AB=6.2\,\mathrm{cm}$ and $BC=4.3\,\mathrm{cm}$. The length of each sloping edge of the pyramid is 9.5 cm.

(b) Calculate the volume of the pyramid.

(a) Show that the height, EF, of the pyramid is 8.72 cm, correct to 3 significant figures.

[4]

Compiled by: Mustafa Asif

(c) Calculate angle AFB.

Answer	 [3]	1

(d) Calculate the angle of elevation of F from the midpoint of AB.

Answer [2]

9

The diagram shows a square ABCD joined to a right-angled triangle BEC. $BE = 6 \,\mathrm{cm}$ and $EC = 7 \,\mathrm{cm}$.

Calculate the area of the pentagon, ABECD.

Answer cm2 [3]

Compiled by: Mustafa Asif

10

The bearing of B from A is 056°. B is 2 km due west of C.

Calculate AC.

C is the base of a cliff. The top of the cliff, D, is vertically above C. DC is perpendicular to BC and $DC = 105 \,\mathrm{m}$.

Calculate the angle of elevation of D from B.

Answer[2]

Compiled by: Mustafa Asif

11

A yacht sails the triangular route shown. The bearing of B from A is 135°. $BC = 3.7 \,\mathrm{km}$, $AC = 2.8 \,\mathrm{km}$ and $A\hat{B}C = 42^\circ$.

(a) Show that CÂB = 62.2°, correct to 1 decimal place.

(b) Find the bearing of A from C.

Answer[2]

[3]

Compiled by: Mustafa Asif

(c) The yacht sails from A to B to C to A.

Calculate the total length of the route.

Answerkm [4]

Compiled by: Mustafa Asif

12

The diagram shows the positions of three towns, A, B and C. B is due north of A and the bearing of C from A is 220°. AB = 25 km and AC = 38 km.

(a) Find the bearing of A from C.

Answer	 ш	1
24712 NV801	 14	

(b) Show that BC = 59.4km correct to 3 significant figures.

[3]

(c) Calculate the bearing of C from B.

Answer[4]

Compiled by: Mustafa Asif

13

ABCD is a rectangle. P and Q are points on DC. AQ and BP intersect at R.

(a)	Prove that triangle ARB is similar to triangle QRP. Give a reason for each statement you make.
	[3]

(b)

In rectangle ABCD, AB = 9 cm and AD = 5 cm. $D\hat{A}Q = 55^{\circ}$, $C\hat{B}P = 35^{\circ}$ and AQ is perpendicular to BP.

(i) Calculate AQ.

Answer	 cm	2
200,020,000	 чи.	-

Compiled by: Mustafa Asif

(11)	Calculate AR.		
(iii)	Calculate the area of triangle ARB .	Answer	cm [2]
(iv)	Calculate the total area shaded in the rectangle.	Answer	cm ² [2]

Compiled by: Mustafa Asif

14

A vertical mast, XY, is positioned on horizontal ground. The mast is supported by four cables attached to the mast at P and to the ground at points A, B, C and D. Y is the centre of the square ABCD. $PY = 7.50 \, \text{m}$.

(a) Given that $AB = 3.65 \,\mathrm{m}$, show that $AY = 2.58 \,\mathrm{m}$ correct to 3 significant figures.

(b) Calculate the length of one of the cables used to support the mast.

Answer m [2]

[3]

Compiled by: Mustafa Asif

(c) Calculate APB.

				Answer		[3]
(d)	Th	e angle of elevation of X from A is 7	7.0°.			
	(i)	Calculate the height, XY of the ma	ıst.			
	(4)	oute and a sergin, see of the and				
				4		F-24
				Answer		m [2
	(ii)	Calculate the angle of elevation of	fX from the m	idpoint of AB		
				4		ra
15	Th	e diagram shows the position of two v	rillages A and B			[2
		North		/J17/12/5		
		†				
		A				
				В		
	(a)	Measure the bearing of B from A .				
`		vicasure the ocaling of D noni/1.		Answer .	I	11
(ъ)	The bearing of village C from A is 265	5°.			2
,		Work out the bearing of A from C .				

Compiled by: Mustafa Asif

(IGCSE QUESTION)

16

The diagram shows a field ABCD.

(a) Calculate the area of the field ABCD.

m ²	F31
ш-	[2]

(b) Calculate the perimeter of the field ABCD.

.....m [5]

Compiled by: Mustafa Asif

(c)	Calculate the shortest distance from A to CD .	
		523
		m [2]
(d)	B is due north of A .	
	Find the bearing of C from B .	
	ž	
		[3]

Compiled by: Mustafa Asif

17	(a) D•———	15	• B	North
	2-			North
	M/J17/21/6		12	
			4 8 C	

A, B, C and D are four towns.

B is $12 \,\mathrm{km}$ due north of A, C is $8 \,\mathrm{km}$ due east of A and D is $15 \,\mathrm{km}$ due west of B.

(i) Calculate the distance of B from C.

Answer	km	f21
227 127 117 117		-

(ii) Calculate the bearing of A from D.

Answer[3]

Compiled by: Mustafa Asif

(b)

The diagram shows the position of a clock tower, T, and a statue, S, drawn to a scale of 1 cm to 75 m.

Using measurements taken from the diagram, find the actual distance between T and S.

Compiled by: Mustafa Asif

18 (a) Calculate the interior angle of a regular nine-sided polygon.

M/J17/21/9

Answer[2]

(b)

ABCDE is a pentagon. AB = 18 cm, BC = 16 cm, CD = 11 cm and EA = 7 cm. $EAB = 115^{\circ}$ and $BDC = 28^{\circ}$.

(i) Show that BE = 21.9 cm, correct to 3 significant figures.

Compiled by: Mustafa Asif

(ii)	Calculate angle DBC.
	Answer[3]
(iii)	The perimeter of the pentagon is 62 cm.
	Given that the area of triangle BDE is $109 \mathrm{cm}^2$, calculate the obtuse angle DEB .
	The second secon

Answer[4]

Compiled by: Mustafa Asif

ABCDE is the cross-section of a building. All the lengths are given in metres.

(a) Calculate DC.

Answer		m [3]
--------	--	-------

(b) Calculate angle EAB.

Answer[3]

Compiled by: Mustafa Asif

(c) Calculate the area of the cross-section.

		Answer	1	n ²	[4]
(d)	A model of the building is made using the scale $1:50$	-			
	What is the area of the cross-section of the model? Give your answer in square centimetres.				

Compiled by: Mustafa Asif

O/N16/21/6

The four walls of a building are faces of a cuboid ABCDEFGH. T is vertically above C and G, so $ABT = ADT = 90^{\circ}$.

The cuboid has length 9 m, width 8 m and height 5 m. TC = 6 m.

(a) Calculate the length of DT.

(b) The roof is formed by four triangles, ABT, BCT, CDT and DAT.

Calculate the total surface area of the roof.

Answer m² [3]

Compiled by: Mustafa Asif

2	per penancular meight]	
Calculate the total volume of the building.		
	Answer	$m^{3}[2]$
Calculate the angle of elevation of T from H .		
	Calculate the total volume of the building. Calculate the angle of elevation of T from H .	Answer

The diagram shows the positions of four islands at A, B, C and D. A is due north of B. $D\hat{A}C = 48^{\circ}$, $C\hat{A}B = 55^{\circ}$ and $B\hat{C}A = 51^{\circ}$. $AC = 19 \,\mathrm{km}$ and $AD = 27 \,\mathrm{km}$.

(a) Calculate the bearing of D from A.

		Answer.	 [1]
(b)	Calculate the bearing of $\mathcal A$ from $\mathcal C$.		
		Answer	 [1]

(c) Calculate the distance between A and B.

Answer km [3]

(d)	Calculate the distance between D and C .
	Answer km [3]
(e)	A boat leaves D and sails, at a constant speed, in a straight line to A . It takes 3 hours and 36 minutes to sail from D to A . X is the point on DA that is closest to C .
	Calculate the time, correct to the nearest minute, the boat takes to travel from D to X .
	Answer[4]

Compiled by: Mustafa Asif

22 (a)

O/N16/22/4

In the framework ABCD, BD = 3 m. $BDA = 27^{\circ}$, $BCD = 41^{\circ}$. DBC and DAB are right angles.

(i) Find.AD.

Answer		m [2]
--------	--	-------

(ii) Find CD.

Answer m [3]

Compiled by: Mustafa Asif

(b) In triangle PQR, PQ = 3 m and QR = 5 m. The area of triangle PQR = 6 m².

Find the two possible values of $P\hat{Q}R$.

23

ABCD is a level playing field. AB = 65 m, BC = 70 m and CA = 110 m. $CDA = 70^{\circ}$, $DAC = 58^{\circ}$ and C is due South of B.

O/N16/22/9

(a) Calculate the bearing of A from C.

Answer[4]

(b) Calculate AD.

Answer m [3]

(c)	The	There are two vertical trees, AX and CX each of height 17 m, one at each end of the path AC .					
	(i)	Calculate the angle of elevation of \boldsymbol{Y} from	B.				
			Answer	[2]			
	(ii)	A bird flies in a straight line from X to Y . It takes 24 seconds.					
		Calculate the average speed of the bird. Give your answer in kilometres per hour.					
			.duswer km/l	h [3]			

Compiled by: Mustafa Asif

24 In the diagram, the bearing of B from A is 170°. The bearing of A from C is 060°. The bearing of C from B is x°.

M/J16/12/17

Given that triangle ABC is isosceles, find the three possible values of x.

AB is vertical and CB is horizontal. AB = 31 m and CB = 115 m.

Calculate the angle of depression of C from A.

Answer[3]

Compiled by: Mustafa Asif

(b)

J and K are two positions at sea. The base of a lighthouse is at L. J is due East of L and K is due South of L. $KL = 354 \,\mathrm{m}$ and $KJ = 1100 \,\mathrm{m}$.

Calculate LĴK.

Answer		[2	9
--------	--	----	---

(ii) Hence find the bearing of K from J.

Answer[1]

Compiled by: Mustafa Asif

26 (a)

ABCD represents the rectangular sloping surface of a triangular prism. ABEF is a horizontal rectangle. CE and DF are vertical. $CBE = 15^{\circ}$, DC = 5 m and AD = 2 m.

(i) Calculate AC.

M/J16/21/9

Answer m [2]

(ii) Calculate CE.

Answer m [2]

Compiled by: Mustafa Asif

(iii) Calculate FÂE.

Assessment	 CAL
Answer	 +1

(b) (i)

A triangle has sides of 10 cm, 9 cm and 6 cm, and an angle of θ °, as shown in the diagram. Calculate θ .

(ii) The triangle KGH has sides of a cm, b cm and c cm as shown in the diagram.

It is given that $K\hat{G}H$ is an obtuse angle.

Complete the statement below using one of the symbols $< \le = \ge >$.

$$c^2 \dots (a^2 + b^2)$$
 [1]

Compiled by: Mustafa Asif

Marking Scheme

1	(a =) 8.75 oe $(b =) 6$ oe	3	B2 for or $\frac{7}{4}$	one correct www or B1 for $\frac{4}{7}$ De seen
2(a)(i)	$\frac{5 \sin 65}{\sin 65 - \sin 45}$ correctly obtained	3	M1 for	$\frac{BC}{\sin 65} = \frac{AC}{\sin 45}$ oe soi and
24.240			B1 for A	4C = BC - 5 oe
2(a)(ii)	22.7 to 22.75	1	7.50.0	
2(b)(i)	$-\frac{11}{40}$ isw	3	Or M1 $13^2 = 6^2$	$\frac{(2^{2} + 10^{2} - 2 \times 6 \times 10 \times \cos PRQ)}{\text{for}}$ $\frac{(2^{2} + 10^{2} \pm (2) \times 6 \times 10 \times \cos PRQ)}{(2^{2} + 10^{2} \pm (2) \times 6 \times 10 \times \cos PRQ)}$ $\frac{33}{120} \text{ or for } -\frac{33}{60}$
2(b)(ii)	1 1 — ft 40	1		
3(a)	128[.0]° or 128.03° to 128.04°		4	B3 for 66[.0] or 66.03 to 66.04 or M2 for [cos L] = $\frac{14^2 + 8^2 - 13^2}{2 \times 14 \times 8}$ or M1 for $13^2 = 14^2 + 8^2 - 2 \times 14$ $\times 8 \times \cos L$ After 0 scored, SC1 for 62 + their $B\hat{L}A$
3(b)	6.93 or 6.92		2	M1 for $13^2 - 11^2$ isw
3(c)	3 hours 28 minutes		2	M1 for $\frac{13}{3.75}$
4(i)	7.95 or 7.948 to 7.949		2	M1 for cos $58 = \frac{PS}{15}$ oe
4(ii)	133.7 or 133.72 to 133.73		4	B1 for 32 and M2 for $\sin R = \frac{15 \times \sin their 32}{11}$ or M1 for $\frac{15}{\sin R} = \frac{11}{\sin their 32}$ oe

5(a)	80 000	2	B1 for answer figs 8 or 400 000 seen or figs5 : figs4 seen
5(b)	235 to 240	1	
5(c)	Correct position of C	2	B1 for bearing of 120° from A or 195° from B
5(d)	2.56 to 2.96	2	Dep on 2 marks in (c) BIFT for correct measurement of their AC
5(e)(i)	38.8 or 38.78 to 38.79	3	M2 for $\sin[] = \frac{4\sin 70}{6}$ or $\sin^{-1}\left(\frac{4\sin 70}{6}\right)$ or M1 for $\frac{4}{\sin[]} = \frac{6}{\sin 70}$ oe
5(e)(ii)	29.2 or 29.18 to 29.19	3	M2 for $\frac{6}{12\frac{1}{3}} \times 60$ oe or M1 for $\frac{6}{their \text{ time}}$ or $\frac{6000}{their \text{ time}}$
6(a)	6 nfww	2	M1 for $(2 \times (6+9))$ / (time in hours)
6(b)(i)	130°	1	
6(b)(ii)	220°	1	
7(a)	$\cos A = \frac{95^2 + 174^2 - 132^2}{2 \times 95 \times 174}$	M2	or M1 for $132^2 = 95^2 + 174^2 - 2 \times 95 \times 174 \times \cos A$
	A = 48.56[7] or 48.57	A1	
7(b)	1580 to 1581	4	M1 for $\frac{1}{2} \times 95 \times 174 \times \sin 48.6$ AND M2 for <i>their</i> area $\times 3 \div 100 \times 8.50$ or M1 for two operations correct in <i>their</i> area $\times 3 \div 100 \times 8.50$ or for $3 \div 100 \times 8.50$ soi

8(a)	$AE^2 = \left(\frac{4.3}{2}\right)^2 + \left(\frac{6.2}{2}\right)^2$ oe	N	1 2	M1 for $AC^2 = 4.3^2 + 6.2^2$ oe
	or $FX^2 = 9.5^2 - \left(\frac{4.3}{2}\right)^2$			or $FX^2 + \left(\frac{4.3}{2}\right)^2 = 9.5^2$
	or $FY^2 = 9.5^2 - \left(\frac{6.2}{2}\right)^2$			or $FY^2 + \left(\frac{6.2}{2}\right)^2 = 9.5^2$
	$\left[EF^2 = \right] 9.5^2 - their AE^2 \text{ oe}$	N	1 1	Dep on M2
	or $\left[EF^2 = \right]$ their $FX^2 - \left(\frac{6.2}{2}\right)^2$			
	or $\left[EF^2 = \right]$ their $FY^2 - \left(\frac{4.3}{2}\right)^2$			
	8.718 to 8.719	A	A1	
8(b)	77.47 to 77.50		2	M1 for $\frac{1}{3} \times 6.2 \times 4.3 \times 8.72$
8(c)	38.1° or 38.09°		3	M2 for $2\sin^{-1}\left(\frac{3.1}{9.5}\right)$ oe
				or M1 for $\sin^{-1}\left(\frac{3.1}{9.5}\right)$ oe
				Alternative method:
				M2 for $\cos AFB = \frac{9.5^2 + 9.5^2 - 6.2^2}{2 \times 9.5 \times 9.5}$
				or M1 for $6.2^2 = 9.5^2 + 9.5^2 - 2 \times 9.5 \times 9.5 \times \cos AFB$
8(d)	76.1° or 76.2° or 76.14 to 76.18°		2	M1 for $tan[] = \frac{8.72}{4.3 \div 2}$ oe
9	106	I .		$[BC^2 =] 6^2 + 7^2 \text{ or better and}$
		 M1	for	[area triangle BCE =] $\frac{6 \times 7}{2}$ or 21
10(b)	13.7 or 13.70	4	B1 AN	for 146°
			M	2 for $\sqrt{12^2 + 2^2 - 2 \times 12 \times 2 \times \cos 146}$
				M1 for $12^2 + 2^2 - 2 \times 12 \times 2 \times \cos 146$
				fernative for 9.95 or 9.948 to 9.949 or 6.71[0] ND
				2 for \sqrt{their} 6.71 ² + $(their$ 9.94 + 2) ² M1 for their 6.71 ² + $(their$ 9.94 + 2) ²
10(c)	3.0 or 3.00 to 3.01	2	M	1 for $\tan = \frac{\text{figs}105}{\text{figs}2}$ oe

	<u> </u>		L		
11(a)	$\sin CAB = \frac{3.7\sin 42}{2.8}$	M2	M1 for	3.7 sin CA	$\frac{1}{B} = \frac{2.8}{\sin 42}$ oe
	OR				
	$C\widehat{A}B = \sin^{-1}\left(\frac{3.7\sin 42}{2.8}\right)$				
	OR.				
	$\frac{\sin CAB}{3.7} = \frac{\sin 42}{2.8} \text{ and}$				
	3.7 2.8 sin=0.88[42]				
	$\widehat{CAB} = 62.15[4]$	Al			
11(b)	[0]17.2°	2	M1 for	135 + 6	52.2 – 180 oe
11(c)	10.5 to 10.6		4	B3 fo	r 4.05 to 4.06
				OR	
				M2 fc	or $\frac{1}{2} + 3.7^2 - 2 \times 2.8 \times 3.7 \times \cos(180 - 42 - 62.2)$
				√2.8 oe	+3./2×2.8×3./×cos(180-42-62.2)
				or M	
				2.8 ² -	$+3.7^2 - 2 \times 2.8 \times 3.7 \times \cos(180 - 42 - 62.2)$ oe
				OR	2.0 : (100 42 62.0)
				M2 f	or $\frac{2.8\sin(180-42-62.2)}{\sin 42}$ oe
				or M	1 for $\frac{\sin(180 - 42 - 62.2)}{AB} = \frac{\sin 42}{2.8}$ oe
				OR	
				M2 fo	or $\frac{3.7\sin(180-42-62.2)}{\sin 62.2}$ oe
				1	
				or ML	1 for $\frac{\sin(180 - 42 - 62.2)}{AB} = \frac{\sin 62.2}{3.7}$ oe
				OR	
				B1 fo	$r \hat{ACB} = 75.8$
12(a)	040			1	
12(b)	BC=			M2	or M1 for $25^2 + 38^2 - 2 \times 25 \times 38 \times \cos(360)$
	$\sqrt{25^2 + 38^2 - 2 \times 25 \times 38 \cos(36)}$	0 – 220)			- 220)
	BC = 59.36 to 59.37			Al	

12(c)	204.1 to 204.3[2]	4	B3 for 24.1 to 24.3[2]
			OR M2 for $\sin B = \frac{38 \times \sin(360 - 220)}{59.4}$ or M1 for $\frac{\sin B}{38} = \frac{\sin(360 - 220)}{59.4}$ and M1 for $180 + their B$
13(a)	$\angle ARB = \angle PRQ$, [vertically] opposite $\angle RAB = \angle RQP$, alternate [angles] $\angle RBA = \angle RPQ$ alternate [angles] $\triangle ARB$ and $\triangle QRP$ similar, equal angles	3	B1 for one pair of angles stated with reason or for two pairs with no reasons or incorrect reasons B1 for a further correct pair of angles with reason
13(b)(i)	[AQ =] 8.72 or 8.717[]	2	M1 for $\cos 55 = \frac{5}{AQ}$ or $\sin 35 = \frac{5}{AQ}$ oe
13(b)(ii)	[AR =] 7.37[2]	2	M1 for $\cos 35 = \frac{AR}{9}$ or $\sin 55 = \frac{AR}{9}$ oe
13(b)(iii)	[Area ARB =] 18.8 to 19.2[] or FT their AR	2	M1 for $\frac{1}{2} \times their 7.37 \times 9 \times sin 35$ oe Or $\frac{1}{2} \times their 7.37 \times \sqrt{9^2 - (their 7.37)^2}$
13(b)(iv)	19.6 to 19.7 nfww 4 555 7.37 0.942 R 1.34 D C	3	M1 for tan 35 = $\frac{PR}{their RQ}$ oe or $\frac{PR}{their RQ} = \frac{their RB}{their AR}$ oe where their $RQ = (their 8.72 - their 7.37)$ M1 for their area $ARB + \frac{1}{2} \times their RQ \times their PR$

14(a)	Need to see 2.58 rounded from a correctly obtained 2 581 or better.	3	
			Method 1 M2 for AY = 3.65 cos 45 or (3.65 ÷ 2) ÷ sin 45
			MI for e.g. $\frac{AY}{3.65} = \cos 45$ or $\sin 45 = \frac{3.65 \div 2}{AY}$
			Method 2 M1 for such as $AY^2 + AY^2 = 3.65^2$ or $3.65^2 + 3.65^2 = AC^2$ soi
			M1 for $AY^2 = \frac{3.65^2}{2}$ oe
			A1 for $AY = 2.580[9]$
14(b)	7.93	2	
			M1 for $7.5^2 + 2.58^2$
14(c)	$26.6^{\circ} \text{ or } 2 \sin^{-1} \left(\frac{0.5 \times 3.65}{\text{their}^{7}.93} \right)$	3FT	
			M2 for $2 \sin^{-1} \left(\frac{0.5 \times 3.65}{their 7.93} \right)$
			or cos [] = $\frac{their7.93^2 + their7.93^2 - 3.65^2}{2 \times their7.93^2}$ Or
			M1 for sin[] = \frac{0.5 \times 3.65}{their 7.93}
			or 3.65 ² = their7.93 ² + their7.93 ² – 2 ×their 7.93 ² × cos []
14(d)(i)	11.18 or 11.2	2	
			M1 for $\tan 77 = \frac{XY}{2.58}$ oe
14(d)(ii)	80.7°	2FT	
			M1 for tan $[] = \frac{their \ 11.2}{3.65 \div 2}$
15(a)	137	1	
15(b)	085	1	ı

			1		
16(a)	7040 or 7035	3	M1 for $\frac{1}{2} \times 100 \times 70$ oe M1 for $\frac{1}{2} \times 100 \times 110 \times \sin 40$ oe		
16(b)	374 or 375 or 374.4 to 374.5	5	M2 for $110^2 + 100^2 - 2 \times 110 \times 100 \times \cos 40$ oe or M1 for implicit form A1 for 5250 or 5247 (or 72.4 or 72.43 to 72.44) M1 for $70^2 + 100^2$		
16(c)	64.3 or 64.27 to 64.28 nfww 2		M1 fo	M1 for $\sin 40 = \frac{\text{distance}}{100}$ oe	
16(d)	235	3	or M1	B2 for [angle $ACB =]$ 34.99 to 35 or [angle $ABC =]$ 55[.0] or M1 for tan[ACB] = $\frac{70}{100}$ or tan[ABC] = $\frac{100}{70}$ or equivalent trig ratio	
17(a)(i)	14.4[2]		2	M1 for $12^2 + 8^2$	
17(a)(ii)	128.6° to 129°		3	M1 for $\tan \theta = \frac{12}{15}$ or $\tan \theta = \frac{15}{12}$ A1 for 38.6 to 38.7 or 51.3 to 51.4 After A0, SC1 for 90 + $\tan^{-1}(\frac{12}{15})$ evaluated or $180 - \tan^{-1}(\frac{15}{12})$ evaluated	
17(b)(i)	472 to 488		2	B1 for 6.3 to 6.5 seen	
17(b)(ii)	F correctly placed		2	M1 for either $TF = 6$ cm plotted or correct angle	
17(b)(iii)	242° to 248°		1		
18(a)	140°		2	M1 for $180 - (360 \div 9)$ or $180(9 - 2) \div 9$	
18(b)(i)	21.89 with at least $7^2 + 18^2 - 2 \times 7 \times 18 \times \cos 115$ see:	n	3	M1 for $7^2 + 18^2 - 2 \times 7 \times 18 \times \cos 115$ A1 for 479.5 or 373 + 106.49 or $373 + 106.5$	
18(b)(ii)	18.8° to 19°		3	M2 for $\sin B = \frac{11\sin 28}{16}$ or M1 for $\frac{\sin B}{11} = \frac{\sin 28}{16}$ oe	
18(b)(iii)	95.47° to 95.5°		4	B3 for 84.5 to 84.6 or M2 for $\sin E = \frac{109 \times 2}{their DE \times 21.9}$ or M1 for $109 = \frac{1}{2} \times 21.9 \times their DE \times \sin E$	

19(a)	14.96 to 15[.0] nfww	3	M2 for $15.1^2 - 2^2$ (= 224.01)
			or M1 for $DC^2 + 2^2 = 15.1^2$ or $15.1^2 - their 2^2$ with horizontal line seen or B1 for horizontal line and 2 soi
19(b)	97.46 to 97.55	3	M2 for $\cos [A] = \frac{9^2 + 11^2 - 15.1^2}{2 \times 9 \times 11}$ oe or B1 for $15.1^2 = 9^2 + 11^2 - 2 \times 9 \times 11 \times \cos[A]$ oe
19(c)	123.8 to 124.1 nfww	4	M3 for $\frac{1}{2} \times 9 \times 11 \times \sin(b) + \frac{1}{2} \times (4+6) \times (a)$ oe with (a) $\neq 15.1$ soi
			or M1 for $\frac{1}{2} \times 9 \times 11 \times \sin(\mathbf{b})$ oe soi and M1 for $\frac{1}{2} \times (4+6) \times (a)$ oe with (a) $\neq 15.1$ soi
19(d)	495.5 to 497	2	FT (c) \times 4 B1 for (figs 5) ² soi

20 (a)	[DT =]10.8 or 10.816 to 10.82	2	M1 for $DT^2 = 6^2 + 9^2$ oe
(b)	139 or 139.2 to 139.3	3	B1 for $BT = 10$ M1 for sum of areas of four triangles seen, with at least 3 of the following correct: $\frac{1}{2} \times 8 \times 6$, $\frac{1}{2} \times 9 \times 6$, $\frac{1}{2} \times 8 \times their DT$, $\frac{1}{2} \times 9 \times their BT$
(c)	504	2	M1 for $9 \times 8 \times 5$ or $\frac{1}{3} \times 9 \times 8 \times 6$
(d)	50.7° final answer	3	M1 for finding an acute angle in triangle <i>THG</i> . e.g. tan [] = $\frac{11}{9}$ or tan [] = $\frac{9}{11}$ A1 for 50.7[]° or 39.28 to 39.3°
21 (a)	283°	1	
(b)	055°	1	
(e)	[AB =] 15.4 or 15.36[]	3	B1 for $ABC = 74^{\circ}$ M1 for $\frac{AB}{\sin 51} = \frac{19}{\sin ABC}$
(d)	[DC =] 20.08 to 20.1	3	M2 for $[DC^2 =] 19^2 + 27^2 - 2 \times 19 \times 27 \times \cos 48$ or M1 for cosine formula with one error
(e)	Correct working leading to 114 minutes or 1 hour 54 minutes	4	M1 for $AX = 19 \times \cos 48$ or for $CX = 19 \times \sin 48$ M1 for $DX = 27 - their AX$ Or for $DX = \sqrt{their DC^2 - their CX^2}$ M1 for Time = $216 \times \frac{their DX}{27}$ oe

22 (a) (i)	2.67	2	M1 $\frac{AD}{3}$ = cos 27 oe
(ii)	4.57	3	M2 for $CD = \frac{3}{\sin 41}$ oe or
			M1 for $\frac{3}{CD} = \sin 41$ oe
(b)	53.1 126.9	3	M1 for $\frac{1}{2} \times 3 \times 5 \times \sin P \hat{Q} R = 6$ oe and
			A1 for 53.1 or
			SC1 for supplementary angles from sin $P\hat{Q}R = k$.
23 (a)	326 ft	4ft	M2 for $65^2 = 110^2 + 70^2 - 2 \times 110 \times 70 \times \cos A\hat{C}B$ soi or
			M1 for the cosine rule with one error.
			A1 for 33.9 or 146.1 or 59.2 and
			B1 ft for 360 — their $A\widehat{C}B$ oe
			SC 2 for 109.1 or 37.0
(b)	92.2	3	M2 for
			$\frac{AD}{\sin(70+58)or(180-(70+58))} = \frac{110}{\sin 70}$ oe soi or
			M1 for 70 + 58 or 180 – (70 + 58)
(c) (i)	13.6 or 13.7	2	M1 for tan $YBC = \frac{17}{70}$ or tan $BYC = \frac{70}{17}$
(ii)	16.5	3	M1 for Figs $\frac{110}{24}$ soi and
			B1 for × by $\frac{60 \times 60}{1000}$ oe soi

24	280,	295, 310		3	* C2 for two correct values OR B2 for two from 70°, 40° and 55° seen OR B1 for 70° seen or for 10° or 120° correctly positioned on diagram
25 (a)		15.1 or 15.08(3		for $\tan \theta = \frac{31}{115}$ or $\tan \theta = \frac{115}{31}$
				A1f	for $\theta = 15.1$ or $\theta = 74.9$
(b) (i)		18.8 or 18.77	2	M1	$for \sin \theta = \frac{354}{1100}$
(ii)	251 or 251.2(1ft	270	- their $L\widehat{J}K$ final ans.
26 (a) ((i)	5.38 to 5.39 or √29		2	M1 for $(AC^2) = 2^2 + 5^2$
(i	ii)	0.517 to 0.518	2	2	M1 for $\frac{CE}{2} = \sin 15$ oe
(ii	ii)	68.8 to 68.9	4		M1 for $\frac{AF}{2} = \cos 15$ oe or BC ² =BE ² + (their CE) ² any complete alternative method
					A1 for 1.932 and
					M1 for $\tan F \hat{A}E = \frac{5}{2\cos 15}$ oe or $\frac{5}{their(AF)}$
(b) ((i)	80.9(4 Or 81	3		B1 for $10^2 = 6^2 + 9^2 - 2 \times 6 \times 9 \times \cos \theta$ or
					B2 for $\cos\theta = \frac{9^2 + 6^2 - 10^2}{2 \times 9 \times 6}$
(ii) >		1			